
 1

Abstract—This Independent study Report aims

to solve certain problems experienced by the

current VCL system, including response

slowdowns when multiple users query the system

for statistical information, Section 2 handles this

part of the problem. We also address the

problem related to backing up large amounts of

data at frequent intervals of time, and as to how

to decrease the backup turn around time of the

database component of the system.

 The solution to these are discussed in Section

3.This report also highlights the major

differences between MYSQL and PostgreSQL,

and tries to arrive at a conclusion as to which

one of these is best suited for VCL environment.

The solution to this is presented in Section 4 of

the report.

 Finally, the problem of whether to distribute

database services in a single VCL system is

addressed in Section 5 of the report. I have tried

to address these problems with the help of

simulations, code and theoretical solutions. The

actual code has been replaced by plain textual

description, and the simulation results are

included in form of a table.

I. INTRODUCTION

his part of the report aims to describe the

functionality of the VCL system. The VCL system

is a complex system which allows the user to

reserve a computer with desired set of applications

and remotely access the reserved system. This

provides great deal of flexibility. VCL allows user

to use popular applications like MATLAB,SAS etc

and provides many simulation environments like

OPNET. All that is needed to make use of this

facility is a valid ID and an Internet connection.

Thousands of student access VCL daily, load on the

System seems to increase significantly, and hence

the ever increase need for performance

enhancement. The future plans to extend the access

to VCL to students who are not part of NC State

University rings an alarm, and has raised several

performance related issues which are discussed in

the following sections. There are some major and

minor changes as suggested in the rest of the report.

We aim to enhance the performance by a

considerable extent. The current VCL system

doesn’t make use of stored procedure and hence

increases the system load as the entire result set has

to be returned. Hence, increases the memory

demand and caused certain scripts to terminate

prematurely. Many queries currently in use can be

modified to perform better by making use of better

operators and paraphrasing the query based on the

nature of the query. The engine used with each

of the table has also been modified depending on

the nature of the tables and based on the nature of

the data stored in them. Significant concurrency can

be achieved using specific type of table, and

decreases the response time.

A detailed comparison between the two leading

open source database system is carried out on the

basis of several parameters that are relevant to VCL

system and a logical conclusion is derived as to

which database system is better for VCL

environment and if a transformation is desired is it

feasible. Additional complexity is introduced as the

Study of Database Reliability and Performance
in VCL

By Yeshwanth Kumaraswamy , North Carolina State University

T

 2

database system is maintained by a third party and

hence convincing them for such a transformation

could be difficult.

Since the VCL is going to expand, by being open to

other community colleges, the number of users will

significantly increase in the near future. Hence it

would make sense to distribute the database

services. This part of the solution is discussed in

Section 5 of the report. The objective of this report

is to address all these problems and provide

satisfactory solutions to each of the aforementioned

problems. Section 6 of this report also predicts the

possible outlook of VCL in the future, where the

services is made open to different regions (divided

into quadrants). This schematic diagram differs

significantly from the cluster based model. This

model involves lot of complication as presented in

section 6, but it can also result in a very robust and

efficient system designed to cater the needs of

number of users.

Section 7 gives the conclusion and future work in

this domain. Section 8 gives the list of all references

both Web and bibliographical.

II. HOW TO AVOID AND MITIGATE DATABASE

REPONSE SLOWDOWNS WHEN MULTIPLE

CONCURRENT REQUESTS ON STATISTICS ARE SENT

TO THE SYSTEM.

A. The Problem

There are restrictions on the size of the script that
can be in the memory at a particular point of time
(say 32 megs), which results in termination of
certain scripts hence resulting in an additional delay.
The use of stored procedure obviates this problem,
by ensuring only the result sets are returned.

One scenario that takes place in the VCL System
involves an application that may need to accept
input from the end user, read some data in the
database, decide what statement to execute next,
retrieve a result, make a decision, execute some
SQL, and so on.

If the application code is written entirely outside of
the database, each of these steps would require a
network round trip between the database and the
application. The time taken to perform these
network trips can easily dominate overall user
response time.

B. The solution

Stored Procedures, allowing to query to be

executed on the server and the results to be sent

back , thus avoiding the entire table from being

loaded into the memory. Client/Server applications

typically have to balance the load between the client

PC and the relatively more powerful server

machine. Using stored program is one of the ways

to reduce the load on the client, which might

otherwise get overloaded [14].

 Network bandwidth is often a serious
constraint on client/server applications, execution of
multiple server-side operations in a single stored
program could reduce network traffic. Also,
maintaining correct versions of client software in a
client/server environment was often problematic.
Centralizing at least some of the processing on the
server allowed a greater measure of control over
core logic.

Stored programs offered clear security advantages,
because in the client/server paradigm, end users
typically connected directly to the database to run
the application. By restricting access to stored
programs only, users would not be able to perform
ad hoc operations against tables and other database
structures. Hence, stored programs can improve the
security of your database server[6] .

Stored procedures add a extra layer of Abstraction

to the existing software application. Which means
that as long as the interface remains the same the
underlying tables can change any number of times ,
without any noticeable change in the application. [1]

By using this layer of abstraction we can prevent a
potential attacker from knowing the structure of the
underlying tables. Hence data become safe from
being exposed to the outside world[1]

Stored programs offer a mechanism to abstract data
access routines, hiding your implementation behind

 3

a procedural interface and making it easier to evolve
your data structures over time.

Stored programs can be used to implement
functionality that is needed and can be called from
multiple applications, and from multiple places
within a single application.

Stored programs will reduce network traffic
considerably. The evidence is this presented in the
figure below. Another security advantage inherent
in stored programs is their resistance to SQL
injection attacks.

Carefully written stored procedures may allow for
fine grained security permissions to be applied to a
database. Each stored procedure written for mysql
can contain security level as either definer or
invoker, the former allows the stored procedure to
be executed with the permissions set for the
invoker, the latter allows the procedure to be
executed with the permissions of the definer who
wrote the code, so the procedure can access all the
tables and data to which the definer is entitled.
Hence, client programs might be restricted from
accessing the database via any means except those
that are provided by the available stored procedures
[14].

Stored procedures allow for business logic to be
embedded as an API in the database, which can
simplify data management and reduce the need to
encode the logic elsewhere in client programs. This
may result in a lesser likelihood of data becoming
corrupted through the use of faulty client programs.
Thus, the database system can ensure data integrity
and consistency with the help of stored procedures.

Some experts claim that databases should be for
storing data only, and that business logic should
only be implemented by writing a business layer of
code, through which client applications should
access the data. However, the use of stored
procedures does not preclude the use of a business

layer.

One scenario involves an application that may need
to accept input from the end user, read some data in
the database, decide what statement to execute next,
retrieve a result, make a decision, execute some

SQL, and so on. If the application code is written
entirely outside of the database, each of these steps
would require a network round trip between the
database and the application. The time taken to
perform these network trips can easily dominate
overall user response time.

C. Figure

The figure below shows abstract functioning of a

stored procedure here a user named Bob calls a

stored procedure called validate_name. The stored

procedure accesses the table users to find out if the

name exists and return only the result hence doesn’t

eat up the memory.

It also mitigates the memory requirement as all

the execution takes place on the server side and only

the result set is being retuned. Hence no more

premature termination of script will take place as

the memory limit placed on the size of script will

not increase. And since the only results are returned

the network will be kept to minimum.

The procedure validate_name() can run directly

within the database engine. In a production system,

this typically means that the procedures run entirely

on a specialized database server, which has direct

access to the data being accessed. The benefit here

is that network communication costs can be avoided

completely. This becomes particularly important for

complex series of SQL statements.

The diagram also depicts an important property of

stored procedures that is the user is completely

abstracted from the behavior of the code. This layer

of abstraction is useful because it allows the

underlying database to be changed as long as the

interface is maintained. And it also allows security

levels to be defined where the execution of the

procedure takes place under invoker or definer

rights.

 4

D. Sample Implementation of Stored Procedure

The stored procedure can be called from our VCL

code (which is written using PHP) using the mysqli

interface. There are several methods available with

the mysqli interface. Mysqli_query() is used to call

the stored procedure from the PHP code. For

example

$result = mysqli_query($link , “call

view_stat(‘param’)”) .

The above result can be fetched row wise or into an

array using mysqli_fetch_row() or

mysqli_fetch_array().

The existing code has to be modified to use mysqli

ineterface instead of mysql interface. Sample stored

procedure in Statistics.php file

delimiter ##

create procedure view_stat (in userid char(10),pass

varchar(225))

 reads sql data

 SQL Security Invoker

Begin

 declare done int default 0;

 declare logged_in int default 0;

 declare uid char(9) default ‘ ‘

 declare pword varchar(225);

 declare err_cond int default 0;

declare continue handler for not found

begin

 set done = 1;

end;

declare exit handler for 1048

begin

 set err_cond = 1;

 end

declare yash_cursor cursor for select unityid ,

password from user;

open yash_cursor;

loop1 : LOOP

begin

fetch yash_cursor into uid,pword;

start transaction;

SAVEPOINT yashpoint;

if strcmp(uid,userid) = 0 and strcmp(pass,pword)=0

begin

 set logged_in = 1;

 leave loop1;

end;

end if;

if done == 1 then

leave loop1;

end if;

if err_cond == 1 then

begin

 select concat(“Script Terminating”);

 leave loop1

 rollback to yash_point;;

end;

end if;

 5

end loop1;

close yash_cursor;

select logged_in;

commit;

end##

The above code shows a simple procedure that will

check if the unity id and password entered match

that in the user table. A simple cursor is defined to

loop through the user table extracting user name and

password , then a simple comparison is made to

determine if the user is present in the table or not an

whether his password matches or not. A continue

handler assists in breaking out of the loop when the

condition not found is met (i.e. end of data).A exit

handler has been defined for some error condition

1048 and sets the variable, and a suitable action is

taken. A status message is printed and the

transaction is roll backed and the script is

terminated. The variable is set to indicate that the

error has occurred.

This code can be called using the syntax shown in

start of part D. Many of the queries can be turned

into calls to stored procedure. As we see the security

level has been set to that of the invoker, hence the

procedure executes with the privilege of the account

executing the procedure.

E) Other Ways of improvement:

i) Database Engine

 Using different engines for different tables

depending on the usage of the respective tables.

The two main engines used are InnoDB and

MyISAM , apart from these we have another engine

type which finds specific relevance in VCL system

is MyISAM merge table.

 Tables with select can be transformed into

MyISAM engine . If the application requires only

fast row counts then MyISAM is more efficient.

Tables which involve many insertions (example

Query log table) can be transformed into MyISAM

to avoid bottle necks.

 Also the myisampack utility compresses MyISAM

tables. myisampack works by compressing each
column in the table separately. Usually,

myisampack packs the data file 40%-70% .When
you later have to use the table , the server reads the
table into the memory the information needed to
decompress the columns.

 This results in better performance as only those

selected rows have to be decompressed . You can
use SELECT, DELETE, UPDATE, and INSERT on
MERGE tables. You must have SELECT,
UPDATE, and DELETE privileges on the MyISAM
tables that you map to a MERGE table.

 Obtaining more speed is one of the major

advantages of. You can split a big read-only table
based on some criteria, and then put individual
tables on different disks. Also, performing repairs
become easier, in comparison to one large table
(Log Table in this example).

 I have concluded that if the following changes are
introduced in the table engine types, then
performance and concurrency can be significantly
enhanced.

Contenders for MyISAM – Image table , OS Table ,
query log ,User Table

 Contenders for MyISAM merge table – Log Table

 Mr. Peeler and Mr. Thompson have promised to

implement the this particular feature in the near
future.

ii) Index and view Usage

Usage of index to quicken search , to modify the

existing indexes in order to maximize the efficiency

of the querying process. The solutions presented

here will be corroborated with the help of

experiment results which ran against sample data. I

 6

have used using the output of explain select

command (run using phpMyAdmin) to determine if

the changes did really bring in any improvement in

terms of space or time .

The query can be executed faster if the optimizer

knows how to eliminate all the unwanted rows and

just look into a small subset of total rows which

would match the search condition , because more

faster it eliminates as many rows as possible ,so that

it will be able to return rows that match your

criteria. This remains the primary purpose of the

optimizer. Queries can be executed much fast if the

most restrictive tests are performed first.

Lets take an example to drive this point through

considering the table `BlockComputers`. This table

has two columns both of which are of type INT.

And we have a combined Primary index defined on

the two columns of this table .

Now if we execute the query

Select comp_name from `BlockComputers` where

blockTimeid = value1 and computerid = value2;

Now if the blockTimeid column matches 700

columns and computerid column matches with 300

values and together these two test produce only 30

columns as the final output. Now lets look how the

optimizer would go about it , if it had chosen to

compare blockTimeid it would had to make 700

tests which produce 670 failures and if it had chosen

to start off by comparing computerid it would have

just had 270 failures tests. Hence the optimizer

would choose to go about comparing the second

column (computerid).

We can help the optimizer make such decisions by

using index wisely. If we plan to set up a combined

index as mentioned in the example above make sure

that both the columns are of the same type , this

would ensure better performance than using two

columns with dissimilar types.

Another way to enhance the performance query of

the index, is to ensure that if any queries involving

arithmetic operations uses any indexed column as a

part of the query then they should be made stand

alone , the following example should make things

clear.

If we had to make a decision as to whether the

blockTimeid is less than 2 (sample query doesn’t

exists in the database)

Select blockTimeid from `BlockComputers` where

computerid < 4 / 2 ;

In the above query the optimizer correctly fetches

only those rows where the computerid is less than 2.

If the query had been written as follows then

Select blockTimeid from `BlockComputers` where

computerid * 2 < 4 ;

Then the optimizer would have fetched all tuples

and multiplied it by 2 and then made a comparison

to extract all those rows with value less than 4. The

purpose of defining the index is defeated.

Hence the way we frame the query plays an

important role even if we have the right indexes

defined on them, the index’s purpose may be

nullifies as the optimizer cannot use them.

The same concept applies when making date
comparison as well. Consider the following query
defined in function getStatGraphHourData

 SELECT l.start AS start, l.finalend AS end

 FROM log l, sublog s, user u

 WHERE year(l.start) < '$endyr' AND

 year(l.finalend) > '$startyr' AND

 s.logid = l.id AND

 s.computerid IS NOT NULL AND

 l.userid != $reloadid AND

 l.userid = u.id AND

 u.affiliationid = {$user['affiliationid']}

 The query is used to find reservations made by a
particular user with a specific affiliation ID. We
extract the year from start and end date and make

 7

comparisons of all the reservations made by
him/her.

Here we have indexes defined on the two columns
start and end. Since we have an operation being
performed on it (i.e. year()) the optimizer will not
apply the index for this query , as first all the rows
will be retrieved and then the operation will be
performed on it (i.e year(start)) then only the
comparison will be made . A remedy for such a
query would be to use date instead of year only.

Indexes use tends to reduce to null and void if the
query involves regex. Hence we should try to use
the regex operators prudently if we want the
optimizer to use the index effectively.

Another possible optimization is to use the features
that the optimizer has been best tuned for. For
example as we are using MySQL ,and its optimizer
has been more optimized joins as sub queries are
recent additions , hence the optimizer has not been
tuned for it.

The use of index can also be nullified if the query
involves usage of auto type conversion.
For example

i) Select * from BlockComputers where blockTimeid

= ‘4’ ;

ii)Select * from BlockComputers where blockTimeid

= 4 ;

The first version involves the usage of auto type
conversion hence optimizer will not use the index ,
the second one doesn’t use the auto type feature ,
hence more effective.

We can use explain to determine if the indexes
defined on the columns are effective in producing
the output of the query.
Say we use the following queries as a replacement
for the part of the query marked in bold

i) Select TO_DAYS(l.finalend) into constant –
TO_DAYS(now())

ii) WHERE TO_DAYS(l.start) -
TO_DAYS(CURDATE()) < constant

iii) WHERE TO_DAYS(l.start) < cutoff +
TO_DAYS(CURDATE())

iv)WHERE l.start < DATE_ADD(CURDATE(),
INTERVAL constant DAY)

Here the part ii) of the query cannot use index as

optimizer cannot use the index as

TO_DAYS(l.start) which requires all the rows to be

pulled out before the comparison has been

performed. The output of the select would look like

explain select * from BlockComputers where

TO_DAYS(l.start) - TO_DAYS(curdate()) <

constant

id: 1
select_type: SIMPLE
table: BlockComputers
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 5
Extra: Using where

The type field says ‘all’ which means index is not

being used (all records are being examined). The

key field shows NULL meaning no index is being

used.

The output of explain select for part iii)

Explain select * BlockComputers from
where to_days(expiration) < constant +
to_days(curdate())

id: 1
select_type: SIMPLE
table: BlockComputers
type: ALL
possible_keys: NULL
key: NULL

 8

key_len: NULL
ref: NULL
rows: 5
Extra: Using where

The first two outputs shows that indexes were not

used for the reasons specified above.

The output of explain select for part iv) looks like

Explain select * from BlockComputers
where constant < date_add(cur_date(), INTERVAL
30 day)

 id: 1
 select_type: SIMPLE
 table: Block
 type: range
possible_keys: comb_index
 key: comb_index
 key_len: 4
 ref: NULL
 rows: 3
 Extra: Using where

Let us apply the concepts discussed above in using
indexes prudently in VCL.

The optimizer tries using the indexes whenever

possible

a)

 The primary index in table Block Computers can

be replaced with combined index to facilitate faster

searching.

After we execute the statement

drop index block_comp_index on

BlockCompouters;

create index new_block_comp primary

on

blockComputers(`blockTimeid` , `computerid`)

the efficiency of such a change was proven with a

sample explain select on `BlockComputers` table on

Page 7.

b)
 Transforming the indexes found in
`BlockRequest` Table into Foreign Key indexes.
This index will also serve to maintain the foreign
key constraint as efficient as possible.

Views can be defined on tables that are queried

frequently and updated rarely, and stored procedure

can be made to query these views based on certain

conditions. For example the following view spreads

across four tables.

CREATE ALGORITHM=UNDEFINED VIEW

`viewstat`.`v1` AS

SELECT

l.userid,l.nowfuture,l.start,l.initialend,l.finalend,l.w

asavailable,

 l.ending,l.ending,i.prettyname,o.prettyname AS OS

FROM log l,image i, user u,OS o WHERE i.id =

l.imageid AND i.OSid = o.id AND l.userid = u.id

ORDER BY i.prettyname;

iii) Changes to system variables

Another Performance enhancing features associated

with MyIsam tables is the ability to delay writing

the index data back to the disk. Mysql usually

flushes the modified key blocks back to the disk

after making changes to them, but there is a

flexibility to modify this default behavior , this can

prove advantageous where there are excessive insert

, delete or update activities. This facility is available

via the modification of the tristate variable (

delay_key_writes) This facility is only

advantageous only if we have clustered database

servers , or else the data may be out of sync , in

which case repair table has to be used.

 9

iv) Query Modification

Many Queries which aren’t replaced by stored

procedures can be replaced by queries which

perform better after having undergone some simple

modification. The results of these sample

modification will be provided in form of execution

time for different input sets.

Query optimization for a stream of queries using

query graph has been described in [9], which is used

to support common sub-expression detection in a

stream of request and it tries to optimize it as a

group rather than individual query.

Before we suggest any changes pertinent to code

changes in the existing VCL code , we have to look

at the way the Query is optimized by MySQL,

This was described in the previous part i.e. pp 6-8

The following code snippet shows how the

performance of a query can be improved by

replacing queries with Cartesian products with join

operators (like natural, left outer, right outer

etc…),this modification is applicable to number of

queries in the actual VCL code. For example the

query in getStatGraphDayData can be replaced by

SELECT count(l.id) FROM log l JOIN user u ON

l.userid = u.id where l.start BETWEEN '$startdate’

and ‘$enddate'

AND

l.userid = u.id AND

u.affiliationid = “{$user[‘affiliationid’]}”;

AND

l.userid != $reloadid ;

Simulation Run Run time (in

sec) Before

modification

Run time (in

sec) After

modification

 1 0.0008 0.0005

 2 0.0008 0.0006

 3 0.0007 0.0004

Usage of built in function also serves as an
improvement. For example the query in
getStatGraphHourData can be improved as
follows

 Select l.start as start , l.finalend as end
 From (log l NATURAL JOIN user (userid ,

unityid …) as u)

OUTER JOIN sublog s on s.logid = l.id

WHERE l.start > ‘$enddt’ and l.finalend >

‘$startdate’

 and nullif (s.computerid,NULL) and u.affliationid

= “{$user[‘affiliationid’]}”;

On similar lines many queries can be modified.

Simulation Run Run time (in

sec) Before

modification

Run time (in

sec) After

modification

 1 0.016 0.07

 2 0.016 0.08

 3 0.015 0.07

Another obvious improvement to execution of a

query is to use the mysql query_cache (appropriate
modification has to be done to my.cnf

(query_cache_type), indicating the exact size of
the query cache).This can be overridden (in case
you don’t want to cache the query) , by explicitly

adding SQL_NO_CACHE to your SQL statements.
When appropriate modification has been made to
the configuration file indicating you want cache
queries, the mysql first looks at the cache for an
exact match without trying to analyze or execute it,
if found the result is immediately returned. The
format in which the result is returned from the cache
is similar to the way the query is returned to the
client , hence very little additional efforts is
required.Mysql uses the hashed value of the query
when looking for a match in the cache.

 10

[Note : The solution specified above couldn’t be

tested as I don’t have access to the my.cnf file , but I

am sure that modifying the size of cache will

definitely avoid frequent re-fetching of instructions

(there will be a cache hit when it comes to

frequently executed queries) Hence there will be a

significant improvement in response time.]

III. A WHICH PROCEDURES MUST BE IN PLACE

FOR BACKING UP STORED DATA .

1) Backing up Stored Data

DUMPS

 When the database it set up , and the tables have

been created (data has been inserted) , mysqldump
can be performed by the administrator , it will be

more efficient to create a shell script which will
execute mysqldump and names the back up files
based on the current date and time. The following
shell script will be executed every hour by

manipulating crontab.

#!/usr/bin/env bash
dbname="vclDBresearch"
user="root"
password=" "
mysql_bin="/usr/local/mysql/bin"

 #Generate a random file name every time using

#the date function

filename="/Users/yash/Everything/EverythingShe
ll/yash"` date +%D%H%M%S`".sql"

#call the dump routine by supplying appropriate

#parameters each time

“ ${mysql_bin}/"mysqldump $dbname -u $user
password=$password > $filename

The crontab can be scheduled to run this shell script

(BackupDB.sh) say every hour .

The changes required to the crontab

 @hourly /Users/yash/BackupDB.sh
This creates the backup of the database identified by
db_name into a file very hour .This file would
contain all the table definitions, along with all the
commands required to lock the tables.

 If we find ourselves running out of space we can
always delete the dumps. Rather than always
deleting the oldest back up we can delete those
dumps that fall on odd days.

 It also promotes Auditing of the previous dump
files, which will be required in case we want to
analyze the cause for Data Corruption , to examine
the rate of growth of your database or any such
reasons.

 We can perform dumps over the network so that
your backups are created on a host other than our
database server.

A sample raw dump of a database named ‘Wolf
Express’

-- MySQL dump 10.13
--
-- Host: localhost Database: WolfExpress
-- --
-- Server version 5.1.22-rc-community

/*!40101 SET
@OLD_CHARACTER_SET_CLIENT=@@CHAR
ACTER_SET_CLIENT */;
/*!40101 SET
@OLD_CHARACTER_SET_RESULTS=@@CH
ARACTER_SET_RESULTS */;
/*!40101 SET
@OLD_COLLATION_CONNECTION=@@COL
LATION_CONNECTION */;
/*!40101 SET NAMES utf8 */;
/*!40103 SET
@OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE='+00:00' */;

 11

/*!40014 SET
@OLD_UNIQUE_CHECKS=@@UNIQUE_CHE
CKS, UNIQUE_CHECKS=0 */;
/*!40014 SET
@OLD_FOREIGN_KEY_CHECKS=@@FOREIG
N_KEY_CHECKS, FOREIGN_KEY_CHECKS=0
*/;
/*!40101 SET
@OLD_SQL_MODE=@@SQL_MODE,
SQL_MODE='NO_AUTO_VALUE_ON_ZERO'
*/;
/*!40111 SET
@OLD_SQL_NOTES=@@SQL_NOTES,
SQL_NOTES=0 */;

--
-- Table structure for table `categories`
--

DROP TABLE IF EXISTS `categories`;
SET @saved_cs_client =
@@character_set_client;
SET character_set_client = utf8;
CREATE TABLE `categories` (
 `id` int(6) unsigned NOT NULL
AUTO_INCREMENT,
 `name` varchar(50) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=3
DEFAULT CHARSET=latin1;
SET character_set_client = @saved_cs_client;

--
-- Dumping data for table `categories`
--

LOCK TABLES `categories` WRITE;
/*!40000 ALTER TABLE `categories` DISABLE
KEYS */;
INSERT INTO `categories` VALUES
(1,'Snacks'),(2,'Beverages');
/*!40000 ALTER TABLE `categories` ENABLE
KEYS */;
UNLOCK TABLES;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE
*/;

/*!40014 SET
FOREIGN_KEY_CHECKS=@OLD_FOREIGN_K
EY_CHECKS */;
/*!40014 SET
UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS
*/;
/*!40101 SET
CHARACTER_SET_CLIENT=@OLD_CHARAC
TER_SET_CLIENT */;
/*!40101 SET
CHARACTER_SET_RESULTS=@OLD_CHARA
CTER_SET_RESULTS */;
/*!40101 SET
COLLATION_CONNECTION=@OLD_COLLATI
ON_CONNECTION */;
/*!40111 SET
SQL_NOTES=@OLD_SQL_NOTES */;

Dump completed on 2007-10-12 20:21:17

The disadvantages of this method lies in the fact
that the dumps produced takes up more space than
the actual table and data. The second reason is that
all the numeric data is converted to ASCII
contributing to the increase in space usage. Dumps
are more CPU intensive hence they take more time
than other methods.

Raw Backups

Raw backups are much faster than dumps because
the data is presented in the native form and doesn’t
involve conversion to ASCII. MySQL offers the
following commands for raw backups namely
mysqlhotcopy , mysqlsnapshot.

Mysqlhotcopy is a perl script that is included in
standard mysql distribution. It is efficient in backing
up large databases (consisting of InnoDB and
MyIsam tables).It is very popular and is used for
producing online raw backups. It works by
obtaining read locks on all tables it is supposed to

backup. The disadvantage of using this is that it
doesn’t scale very well when the traffic increases.
Restoring the files backed up (.MYI , .MYD ,
.FRM) using mysqlhotcopy , involves copying the
appropriate files into the correct subdirectories.

 12

If we have large number of InnoDB tables then

ibbackup is the best tool. http://innodb.com/hot-
backup/

MysqlSnapShot is yet another tool used for raw
backup. The draw back is that it can only be used
for MyIsam tables.

$ mysqlsnapshot -u root -p Password -s /tmp/snap --
split -n
This produces separate tar file for each database in
the system.

There are tools to perform offline backups but that
would be irrelevant in our case as the mysql server
is not managed by us.

As we have discussed various ways by which back
up can be performed , but each method has its own
pros and cons. We can improve this by developing a
script which traverses every table in a database ,
determines the kind of engine it utilizes and call
appropriate routine.

If the log table is implemented as a MyISAM merge
table , then the size of those tables can grow very
fast in which case it may be desired to free up some
old obsolete data or move them to external storage,
the following pseudo code (actually a perl script
transformed into textual description).

The following textual description computes the table

sizes , and performs a check to see if the size of the

table is exceeding a threshold. If so it alerts the

administrator to take appropriate action.

#definition of variables

cmd = " "; #The mysql back up command

tname, ttype; #holds table name and type

table_sizes; #array that holds the table sizes

dbh; #database handle

#the file which holds the old table names and sizes

temp_file = “/tmp/temp/yash”;

Contains alert message for the Admin

Pseudocode subroutine

connect(db="VclDbresearch", host = "localhost" ,

user="root", password=" ")

#connect to database

Begin

 dbh=connect(db , host , user , password)

end

Pseudocode subroutine disconnect(dbh)

Begin

#disconnect from database

dbh.disconnect or warn "Disconnection error:

end

Pseudo code subroutine mail_admin()

Begin

Mails the table sizes and warning message to the
administrator

sendmail = ‘/usr/sbin/sendmail –t’;

if (send == “ “) then

begin

 print “Enter the to_address “ ;

 exit;

end if

Verify if the address is valid

Set up the variables required to mail the admin

rep_to = “Reply-to:admin@ncsu.edu\n”;

send_to = “To:” . $send . “\n”;

subject = “Subject :” . $sub . “\n”;

open (SENDMAIL,” | $sendmail”)

 13

print SENDMAIL $reply_to;

print SENDMAIL $subject;

print SENDMAIL $send_to;

print SENDMAIL “Content-type:text/plain\n\n”;

print SENDMAIL $content;

close SENDMAIL;

end

sub sort_table_res()

begin

 Sort the tables result

end

Find out tables names and their Engines ,
ExecuteQuery("USE INFORMATION_SCHEMA");

Prepare("Select table_name,ENGINE from

TABLES where table_schema like 'vclDBresearch');

Execute the query

table_in = ExecuteQuery();

foreach table tb (table_in)

begin

 System(cmd);

 End for

#Ignore table with Engine Heap As they don’t
reside in the disk

 Else if (tb eq "Hash")

 Begin

 Next;

 end

flush and lock all tables
All MyISAM tables

ExecuteQuery("FLUSH TABLES WITH READ

LOCK");

ExecuteQuery("USE $db");

table_info = ExecuteQuery("SHOW TABLE

STATUS");

#Open the file and dump the contents in it
#These values can be used as comparision
to see % growth in the table size
#if it has exceeded a threshold then alert the
admin

 foreach table tb in(table_info)

begin

 name = table.Name;

 size = table.Data_length;

end for

The file temp which hold the data of table names
and sizes is created

Open the temp file and write the information of

table name and sizes into it

Read in the old table size for each table in the file

Read in the new table size for each table in the

array

 # I assume the number of tables don’t increase
for simplicity

Find the change in size of table

per_change = int ($sizenew - $sizeold) / $sizeold;

if ($perchange > $threshold)

begin

 #Prepare the content for admin

text = text + “The table “ + tabnew .

+ “Has a size of “ + sizenew . “\n”;

End if

 14

Call mail_admin (text , send_to , $sub , $reply_to);

#Execute the Backup

system(cmd);

unlock the tables

ExecuteQuery("UNLOCK TABLES");

sort by size and print

sort(table_sizes);

_ _END_ _

IV. B SYNCHRONIZING DATABASE IN MULTIPLE

DATABASE SYSTEMS, AND DECREASING BACKUP

TURN AROUND TIME OF DATABASE COMPONENT OF

THE SYSTEM.

The first two solutions are theoretical and hence
were not actually considered as viable solutions.
The third solution recommends the usage of
MySQL Cluster which takes care of all the
requirements mentioned in the topic. Its features are
mentioned clearly in the part c).

a) Replication

Master Slave model can be used where the slave
holds the exact copy , and can take over in case the
master fails. This works as follows, the master
maintains a binary log of all queries which modify
the data in the database ,and this is sent across the
network to the slave . The slave executes these set
of queries against its local copy of data , hence
allows consistency to be maintained between the
local copy and the server copy.

Using a creative DNS setup , the applications can be
insulated from knowing whether they are being
served by the master or the slave , and minimizes
the effort involved in switching from master to
slave in case of failure. Say we have our mysql
master server running at say
www.mysqlserver1.com and slave running at
www.mysqlserver2.com , instead of hardcoding the

address of the master into our PHP applications , we
can set modify the DNS records in the server , by

adding www.mysqlserver.com as the Canonical

Name and by using a very small value for TTL , we
can ensure that the information is not cached in the
clients machine for a long duration. In case the
mysql server in the master node crashes, we can
have a script which automatically modifies the DNS
records so that www.mysqlserver.com now points
to the slave server. When the TTL expires the client
would automatically start referring to the new slave
server.

b) Load Balancing

This involves having one master server and several

slave servers. The catch here is finding a way to
efficiently distribute the query across several slave
servers, so that all them get equal workload. The
simplest approach will be to use Round-Robin DNS
using which we can assign multiple IP addresses to
one hostname, and make sure that our application
connects to one random slave server.

c) MySQL Cluster

Most of the requirements discussed above namely
High Availability , reduction of downtime,
automatic detection of failure and recovery from it

etc … are provided by MySQL Cluster, which
combines mysql with a fault tolerant database

clustering architecture.

Some of the major features of MySQL Cluster are

• It ensures high availability and guarantees
of less than 5 minutes of down time a year,
including scheduled maintenance. MySQL
Cluster implements automatic node
recoverability to ensure an application
automatically fails over to another database
node that contains a consistent data set, if
one or more database ndes fail. Should all
nodes fail due to hardware faults for
example, MySQL Cluster ensures an entire
system can be safely recovered in a
consistent state by using a combination of
checkpoints and log execution. Furthermore,

 15

MySQL Cluster ensures systems are
available and consistent across geographies
by enabling entire clusters to be replicated
across regions.

• MySQL Cluster provides the response time
and throughput to meet the most demanding
high volume enterprise applications.
MySQL Cluster achieves its performance
advantage by being a main memory
clustered database solution, which keeps all
data in memory and limits IO bottlenecks by
asynchronously writing transaction logs to
disk. It also enables sharing of processing
within a cluster.

• MySQL delivers extremely fast failover time
with sub-second response so your
applications can recover quickly in the event
of application, network or hardware failure.
MySQL Cluster uses synchronous
replication to propagate transaction
information to all the appropriate database
nodes so applications can automatically fail
over to another node extremely quickly.

• The parallel server architecture combines
database nodes, management server nodes,
and application nodes that can be distributed
across computers and geographies to ensure
there is no single point of failure. Any node
can be stopped or started without stopping
the applications that use the database.

• MySQL Cluster is designed to be largely
self-governing so very few system
parameters actually need fine-tuning, further
reducing the risk of costly errors. As a result,
there are typically fewer conflicts with other
software and hardware, and less need for
manual intervention.

• MySQL Cluster includes easy to use and
powerful tools for administering your
clustered environment. Command line tools
enable you to monitor database nodes,

control access to applications, and create and
restore backups.

d) Decrease back up turn around time

Two solutions were initially proposed but only the
second was accepted.

i) Server crashes is a possibility in which
case it is essential to get the system back
in working state as soon as possible. One
of the popular ways of doing that is via

the use of hot – swappable RAID disks
,not supporting the RAID means that the
server can handle one disk crash , but the
system has to be shut down to replace
the bad disk.The best way to overcome
this problem would be to use the spare
disk (RAID) in case of failure. But one
disadvantage associated it with that you
are sacrificing performance efficiency as
well as redundancy.

ii) Mysql Cluster can be used for the

reasons mentioned below :

a) It ensures high availability and guarantees of less
than 5 minutes of down time a year, including
scheduled maintenance. MySQL Cluster
implements automatic node recoverability to ensure
an application automatically fails over to another
database node that contains a consistent data set, if
one or more database nodes fail. Should all nodes
fail due to hardware faults for example, MySQL
Cluster ensures an entire system can be safely
recovered in a consistent state by using a
combination of checkpoints and log execution.
Furthermore, MySQL Cluster ensures systems are
available and consistent across geographies by
enabling entire clusters to be replicated across
regions.

b) MySQL Cluster is designed to be largely self-
governing so very few system parameters actually
need fine-tuning, further reducing the risk of costly
errors. As a result, there are typically fewer conflicts
with other software and hardware, and less need for
manual intervention.

 16

c) MySQL delivers extremely fast failover time
with sub-second response so your applications can
recover quickly in the event of application, network
or hardware failure. MySQL Cluster uses
synchronous replication to propagate transaction
information to all the appropriate database nodes so
applications can automatically fail over to another
node extremely quickly.

V. WHAT ARE THE ADVANTAGES IF ANY OF USING

POSTGRESQL INSTEAD OF MYSQL IN VCL

ARCHITECTURE .

 Open Source database programmer have had a lot
of options when it comes to choosing their database
management systems. But, the two major open
source relational databases are PostgreSQL and
MySQL. Both of these relational management
systems that are available for free for download.
The features provided by postgreSQL are slightly
more advanced than that provided by MySQL these
will be listed in the following section. There has
been an ever raging battle between these two open
source giants.

The database system for the VCL system is
maintained by a third party. Hence migration has to
be justified strongly to convince them for such an
act.

I shall bring out some of the basic differences
between postgreSQL and MySQL and then we shall
discuss which one of them is best suited for VCL
environment.

It would be very difficult to generalize which one of
these two would be better, but if the exact scenario
in which the application will operate is given , then
we will be able to draw some valid conclusion
regarding this dilemma.

I will enumerate the basic differences between the
two based on the following parameters.

Let us take these parameters and some code specific
aspects to arrive at a conclusion regarding which
one of them is the best for our VCL application and

discuss about the feasibility of migration (if we
decide to choose PostgreSQL).

PostgreSQL offers some advanced features that are
absent from mysql we will examine each of these in
detail ,this will aid us in arriving at a conclusion.

i) SQL standard and compliance :

PostgreSQL understands a good subset of
SQL92/99 plus some object-oriented features to
these subsets. Postgres is capable of handling
complex routines and rules as declarative SQL
queries, subqueries, views, multi-user support,
transactions, query optimization, inheritance, and
arrays .Does not support selecting data across
different databases[13].

MySQL uses SQL92 as its foundation. Runs on
countless platforms. Mysql can construct queries
that can join tables from different databases.
Supports both left and right outer joins using both
ANSI and ODBC syntax. As of MySQL 4.1 from
that release on, MySQL will handle subqueries.
Views supported as of release 5.

Outcome

Mysql query optimizers performs an extensive

search of all the query evaluation plan to determine

the best plan. As far as join queries are concerned

the number of possible plans investigated by the

MYSQL grows exponentially. This fact shouldn’t

deter us as the number of tables involved in join

queries are kept minimal in our queries.

Mysql supports Stored Procedures , Functions and

Triggers as well , like PostgreSQL.

Here postgreSQL is marginally better in terms of

features like object-oriented aspects , handling

complex routines etc... .As our application doesn’t

involve any sequel code referring tables spread

across several databases, the constraint of Postgres

shouldn’t bother us.

ii) Platforms :

PostgreSQL lacks binary distribution for all the
supported plataforms. One of the problems is that

 17

PostgreSQL doesn't run properly on NT as a service
by default, you need something like firedaemon to
start it. The PgAccess GUI is available on windows
as well, but it lacks a few features that psql
supports. Non-supported platforms:
Windows9x/Me, NextStep, Ultrix.

MYSQL has binary distribution for most of the
supported platforms. MySQL works better on
Windows than PostgreSQL does. MySQL runs as a
native Windows application (a service on
NT/Win2000/WinXP), while PostgreSQL is run
under the cygwin emulation.

Outcome

Mysql is better than Postgres in this regard due to it

versatility.

iii) Speed

PostgreSQL slower on low-end but has some
options for improving. Postgres forks on every
incoming connection - and the forking process and
backend setup is a bit slow, but one can speed up
PostgreSQL by coding things as stored procedures.
But postgres is very good at holding large loads[12].

MySQL is very fast on both simple and complex
SELECTs, but might require changing the database
type from MyISAM to InnoDB for UPDATE
intense applications.Mysql proponents claim that
the time to execute read only task is very less in
mysql than postgres.Hence they are very efficient in
application which involve large amount is read.
MySQL handles connections very fast, thus making
it suitable to use MySQL for Web - if you have
hundreds of CGIs connecting/disconnecting all the
time you'd like to avoid long startup procedures.

Outcome

Here again I feel MYSQL is better than PostgreSQL

as our application will cross the 2 million users

mark (and the number is expected to increase as our

application is going to be made public with website

opening up to community schools etc.) Hence speed

becomes an important factor.Mysql is versatile in

handling incoming connection requests quickly and

hence making it ideal for number of users intensive

application like VCL.

iv) Stability

PostgreSQL 6.x series and earlier were much worse
in this aspect. Random disconnects, core dumps and
memory leaks are usual. PostgreSQL 7.x series was
a big improvement. Expect PostgreSQL 8.x to
continue this trend.

MySQL does very good job even on the busiest
sites; it certainly has some problems handling
hundreds of connections per second, but these
problems are resolvable. Random disconnects and
core dumps are exceptionally rare. MySQL has a
much larger user base than PostgreSQL, therefore
the code is more tested and has historically been
more stable than PostgreSQL and more used in
production environments.

Outcome
Mysql has another clear advantage over

PostgreSQL. http://www.vcl.ncsu.edu clearly

qualifies as a busy site. Hence a more stable

database system like mysql is essential , rather than

postgres which suffers from random disconnects,

and since mysql has been in use more widely in

various environments , hence it is clearly better in

terms of stability than Postgres.

v) Data Integrity

A very preliminary quality that must be satisfies by
a good database management system. It is the basic
task of any system to guarantee safe storage and
retrieval of data i.e. the contents shouldn’t be
manipulated by the database in an unexpected way.
PostgreSQL pays a lot of attention to see through
that the ACID properties are maintained, and hence
ensures a consistent state of the database all the
time. Postgres also supports the concept of WAL
(write ahead logs) , this feature enable it to recover
the database to a to any point in history[12].

 18

Postgres does very good job supporting referential
integrity, has transactions and rollbacks, foreign
keys ON DELETE CASCADE and ON UPDATE
CASCADE.

Mysql has a indifferent view towards ACID
properties. Mysql has some basic provisions for
referential integrity and transactions/rollbacks.
CHECK clause is allowed for compatibility only
and has no effect on database operation.
InnoDB tables have FOREIGN KEYs for relational
or multi-table delete, and support transaction
processing. In MySAM tables FOREIGN KEY is
for compatibility only and has no effect on database
operation[12].

Outcome

PostgreSQL is better than mysql in this regard,

primarily because of its strict adherence to ACID

properties and Postgres is little more strict when it

comes to acceptance of data than MySQL. This can

prove to be very harmful. The following example

shows how this leniency of Mysql can result in it

accepting invalid data.

Example [13]

mysql> create table foo(a date);
Query OK, 0 rows affected (0.08 sec)

mysql> insert into foo (a) values('2007-feb-30');

Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> select * from foo;

+------------+

| a |

+------------+

| 0000-00-00 |

+------------+

1 row in set (0.00 sec)

The same scenario in postgres would have

produced the following results

atf=# insert into foo (a) values('2007-feb-30');

ERROR: date/time field value out of range: "2007-

feb-30"

Comparing all the cases in defense of data integrity

postgreSQL is a clear winner.

vi) Special Server Side Features

Postgres has rules, triggers, server-side functions
that can be written in C, pgsql, python, perl and tcl
languages. INSTEAD OF rules can be used for
updating data through views.
PostgreSQL has schemas that allow users to create
objects in separate namespaces, so two people or
applications can have tables with the same name.
There is also a public schema for shared tables.
Table/index creation can be restricted by removing
permissions on the public schema.

 MySQL has simple (and probably inconvenient)

mechanism for server-side shared libraries with C
functions. Rudimentary support for triggers was
included beginning with MySQL 5.0.2. An external
development implemented in perl can be used as
stored procedures in Mysql. MySql has more
powerful admin tools included in the distribution
(mysqladmin allows you to watch processes and
queries in-progress), including hot backup, a file
corruption recovery tool and couple of others.
Command-line tools - you can see database and
table structures using describe and show commands.
Postgres' commands are less obvious (\d to show a
list of tables for instance).

 Outcome

 In our application triggers are not used, hence it

doesn’t convince us to migrate from mysql to

postgres. Even though mysql doesn’t offer the depth

in the afore mentioned features but is no way

incompetent. Moreover, keeping the nature of our

application and code in mind, we can safely assume

that Mysql is a good compromise.

 vii) Locking and Conurrency support

 PostgreSQL has a mechanism called MVCC
(MultiVersion Concurrency Control), comparable or
superior to best commercial databases. It can do

 19

row-level locking, can lock rows for writing in one
session but give these rows unaffected in another
session. MVCC is considered better than row-level
locking because a reader is never blocked by writer.
Instead, PostgreSQL keeps track of all transactions
and is able to manage the records without waiting to
become available.

 MySQL can do table locking for ISAM / MyISAM
and HEAP tables, page level locking for BDB
tables. InnoDB has full row level locking support.
 Outcome

PostgreSQL is a clear winner when it comes to

transaction control, and especially taking the

number of simultaneous operations being

performed on the same table. But InnoDB offers a

good compromise by providing complete row level

locking.

 viii) Large Objects

 In Postgres, Large Objects are very special beasties.
You need to create them using lo_create function
and store the result of the function - OID - in a
regular table. Later you can manipulate the LOB
using the OID and other functions -
lo_read/lo_write, etc. Large object support is broken
in Postgres - pg_dump cannot dump LOBs; you
need to develop your own backup mechanism. The
team is working on implementing large rows; this
will replace current LOB support.

 In MySQL, text and binary LOBs are just fields in

the table. Nothing special - just INSERT, UPDATE,
SELECT and DELETE it the way you like. There
are some limitations on indexing and applying
functions to these fields.

 Outcome

Mysql is better than Postgresql in this aspect but

sadly large objects aren’t used in our VCL code.

 ix) Alter Table

 Postgres supports ALTER TABLE to some extent.
You can ADD COLUMN, RENAME COLUMN
and RENAME TABLE.

 MySQL has all options in ALTER TABLE - you

can ADD column, DROP it, RENAME or
CHANGE its type on the fly - very good feature for
busy servers, when you don't want to lock the entire
database to dump it, change definition and reload it
back.

 Outcome

This is a very essential feature which mysql fully

supports and provides. Provides great flexibility

and avoids unnecessary locking.

 x) National Language Support

 Postgres compiled with --enable-locale does some
jobs based on its locale settings, and can change
locale settings per client (not per database), which is
a bit more flexible. Compiled --with-mb (Multibyte
support) Postgres can translate on-the-fly between
many predefined character sets.

 MySQL does some tasks based on its locale
settings, but not many. .Both databases now support

Unicode characters; MySQL supports both UCS-2

and UTF-8 encoding, and PostgreSQL supports

only the latter.

Outcome

Again a compromise to be made in regards to this

feature if we choose to mysql, but it is not much of a

concern as our tables use the default latin1 charset.

xi) Features

Both MySQL and postgreSQL provide and array of

built in functions that provide functions ranging

from string manipulation functions to date time

functions. There are lot of common data types

supported by both postgreSQL and MySQL , they

also contain certain data types that are native to

only there system , for example the interval

datatype.

Postgres has certain features that are unique to it ,

and mysql either doesn’t have these features built-in

or they are being planned for future release.One

such feature is the use of subselect anywhere in a

 20

query. Both postgres and mysql are extremely easy

to use , recently the GUI for mysql named query

browser was released which makes the task of

writing Stored Procedure , Functions , writing

query , executing backups , administering the

performance of the system , modifying performance

variables etc… a interactive and simplified

operation. Such a GUI tool is available for postgres

as well.

Administration is extremely simple in both postgres

and mysql , this is completely different from

database systems like oracle .As mentioned in the

last para with the help GUI tools the task becomes

even simpler.

Outcome

I feel the features provided by MYSQL are good

enough for most of the application especially VCL.

Hence this point of features doesn’t strongly

encourage a migration from mysql to postgres.

In terms of administration both are equally good ,

but mysql has a slight edge in terms of good

experience and replication integration[13].

xii) Support

 MySQL is much more widely used, so many more

applications support MySQL, and there is a larger

community ready to assist you with problems, as

well as more books and resources on MySQL.

MySQL AB, the commercial company guiding

MySQL, and who employ most of the developers,

offer various levels of support contracts.

Of course, PostgreSQL has active mailing lists, and

there are commercial companies offering support as

well, so you are not likely to go too far wrong with

either.

Outcome

Mysql definitely proves to be better than post gres

in this case .

 xiii) Security

 This feature being a very important one , we shall
analyze it considering the factors like the existing
security features , shortcomings , vulnerabilities ,

attacks , prevention applicable to both mysql and
postgreSQL.

 MySQL has exceptionally good fine-grained access

control. You can GRANT and REVOKE whatever
rights you want, based on user name, table name
and client host name.

Mysql’s simplicity is one of its major strength ,
extremely useful features of Microsoft SQL Server
is the ability to execute queries on remote database
servers using openrowset using the following syntax

 PostgreSQL has similar features, but a little less
fine-grained. For example, if user can connect to a
database, user can CREATE TABLE, thus running
Denial-of-Service. On the other hand PostgreSQL
can limit logins based on different criteria - network
segment, indent string, etc.

Select * from openrowset(… ; MySQL host , root ,
password ; ‘Select * from mysql.user’...)

This command allows user to execute a query on a
remote server running possibly a different DBMS –
in middle of an SQL server query , this could be
used as a port scanner to scan the network that the
server currently is in. This illustrates one of the
strengths of Mysql as openrowset statement doesn’t
exists.

SQL injection is a technique that exploits a security
vulnerability occurring in the database layer of an
application. The vulnerability is present when user
input is either incorrectly filtered for string literal
escape characters embedded in SQL statements or
user input is not strongly typed and thereby
unexpectedly executed. It is in fact an instance of a

 21

more general class of vulnerabilities that can occur
whenever one programming or scripting language is
embedded inside another (definition courtesy

Wikipedia).

SQL Injection attacks happens only in interactive
web applications where the user is asked to enter
his/her input at runtime. The attacker may provide a
carefully structured malicious query which would
result in different database request than the intended
one [1] .
Sql injection attacks happens at the application layer
as where dynamic sql queries are generated , this
can be avoided by checking the query semantics at
run time. We have to pay attention to SQL injection
attacks that happens at the database layer.

Since we aim on replacing all queries in the php
code of VCL with calls to stored procedures it
would be good to focus on trying to defend attacks
directed towards stored procedure in the database
layer.

The stored procedure provides an extra layer of
abstraction at the database layer as described in
Section 1 of the report.

Technique for detecting SQLIA (SQL injection
attacks) have been described in “Preventing SQL

injection attacks in Stored Procedure-” (Source 1

in References). A method described in that paper
shows how to prevent the malicious statements
from accessing the database.

i) Sample Code to demonstrate SQL injection

in Stored Procedure.[1]

Create procedure employee. RetrieveProfile (in
name varchar(50), in Passwd varchar(50))
Sql security invoker
as
begin
declare @SQL varchar(200);

set @SQL=‘select PROFILE from EMPLOYEE
where ‘;
if len(@Name) > 0 AND len(@Passwd) > 0

Begin

 select @SQL=@SQL+‘NAME=“‘+@Name+“‘ and
‘;
select
@SQL=@SQL+‘PASSWD=“‘+@Passwd+““;

end

else
begin

select @SQL=@SQL+‘NAME=“Guest“‘;
end
exec(@SQL)

end

The above procedure presents a possible scenario
when SQLIA can take place with a stored
procedure.

The user is expected to provide a user name and
password, if he doesn’t then he is granted guest
access.

If the malicious attacker enter the value of user
name as follows enters

@name = y ‘ or ‘f‘ = ‘f

@pass = r ‘ or ‘r’ = ‘r

Then the query evaluates to

Select profile from employee where @name=’y’ or
‘f’=’f’ and @passwd = ‘r’ or ‘s’=’s’ ;

This condition would always succeed and hence
will result in the attacker seeing all the data present
in the table employee which he is not supposed to
see.

 SQL Injection can be reduced but not completely
avoided in mysql and php by using
mysql_real_escape_string. Use of stored
procedures give us a great deal of flexibility of
enforcing some amount of insulation against SQL
injection, this is one of the forte of using stored
procedures in mysql. Specific permissions are
required before a user can create a stored program,
and, similarly, specific permissions are needed in

 22

order to execute a program. A solution for avoiding
such attacks is by using static analysis and runtime

validation. This method is described in [1].

What sets the stored program security model apart
from that of other database objects and from other
programming languages is that stored programs may
execute with the permissions of the user who
created the stored program, rather than those of the
user who is executing the stored program. This
model allows users to execute operations via a
stored program that they would not be privileged to
execute using straight SQL.

We can also create stored programs that execute
with the privileges of the calling user, rather than
those of the user who created the program. This
mode of security is sometimes called invoker rights
security, and it offers other advantages beyond those
of definer rights.

Since our application makes use of stored procedure
it adds a layer of insulation against SQL injection (
all the stored procedures should use security level of
invoker so that no malicious user will be able to
access the tables .We can code our stored
procedures in such a way that tables are completely
locked to the users from unauthorized access.

So now to the big question Postgres or Mysql ?

Mysql seems to be meeting the requirement of our

application (VCL) ,it may not provide data integrity

in the same scale or quality as that of postgres, but

still does a decent job. Moreover stability is very

essential, mysql is much more stable than postgres

which suffers random disconnects ,which may not

be a good sign for a busy system like VCL.

And mysql is faster in execution of queries that are

read oriented , and moreover mysql is very versatile

as it is supported on number of platforms. When it

comes to the issue of migrating to a different

database system ,especially for application of this

magnitude a lot of thought has to be given so as

justify whether such a change is warranted.

After having weighed all the pros and and cons , I

would affirm that MySQL should continue to

operate as our back end.

VI. WHETHER IT MAKES SENSE TO DISTRIBUTE

THE DATABASE SERVICES IN A SINGLE VCL SYSTEM.

A. Introduction

 Highly parallel database systems have displaced
conventional mainframe computers for handling
large databases and transaction processing tasks.
Before two decade or so the future and realization
of parallel database system seemed very bleak, this
was primarily due to the fact that most of the
research was directed towards hardware (that
researchers vouched on for the realization of
parallel database system. But none of these devices
were able to deliver the goods.

 Another problem which the researchers faced
was the increasing at rate much slower than that of
the processor, which increased by several factors.
Hence the researchers faced the problem of I/O
Bottleneck unless , some way to negotiate the speed
difference between the processor and the disk was
found out.

 The arrival of relational database model changed
the entire face of parallel database system. The
queries written in relational model were inherently
cable of being executed in small chunks
simultaneously at different locations ,each location
possessing own copy of part of the data , i.e. the
each location holds certain number of rows of each
table in the schema.

 Once the data has been split across different
heterogeneous systems, the task of distributed data
processing takes over. This task is by no means
simple as the parallel system is composed of several
thousands of heterogeneous systems, and every
system which is a part of the distributed system will
undergo changes at random intervals, this would
depend on the load at that particular point of time.
The new systems which are currently a part of the
distributed system have to interact with legacy
system although the legacy system do not have to
process the distributed data.

 23

B. The Proposition

I feel it does make sense to distribute the database
services , as it makes the system more efficient ,
fault tolerant , can accommodate many users ,
support users from various domains (other than
NC state Students) , reduce response time , keep
the number of users per blade server to an optimal
number , avoid response slowdowns , will be more
robust i.e. crashing of one quadrant will not deny
any user access to resources

The request will automatically be guided on to the
next quadrant , hence the there will never be a case
where the user is kept waiting or where the user is
forced to retry after some time .
The figures 1.1. and 1.2 show the general nature of
a clustered system as well as a distributed system.
The structure of each will be explained in the next

 section.

C. Figure

 Figure 1.1 – Clustered System

The figure 1.1 shows the basic structure of a

clustered system. Here we are under the assumption

that the facilities provided by VCL (making a

reservation , requesting statistical data , ending a

reservation etc…) are available to students and

professors outside NC State University . Here I

have assumed the system to be open to UNCB ,

WCU , NCSU and UNCW.

 The four colleges are considered to be four

different quadrants. In figure 1.1 the user is

assumed to make a reservation via a web

application through a root database which aids in

distributing the services. Each of the four quadrants

do not maintain their own local copy of the

database. The master database also serves as the

root database (i.e. all the information regardless of

which quadrant the information is applicable , it

will be stored in the root database only.

 Figure 1.2 – Distributed System

 24

This doesn’t seem to make sense as to why should

we interleave data from different sources in one

place even though we use the same schema

everywhere. This results in additional complication

in terms of maintaining regular back ups , crash

recovery , maintaining several secondary copies of

the up to date data in several slave nodes etc…

Moreover we also observe in figure 1.1 that there

are only management nodes and Blade servers

within each quadrant. When a request arrives say

from user Bob , who belongs to UNCB , the data for

UNCB students is not localized in the database,

hence the response will be slower in comparison to

a system which maintains separate copies of the

database for each quadrant. After the request was

successfully redirected to an appropriate node in the

UNCB quadrant , the user has made an reservation

and he interacts with the allotted node via the

master node. We have determined lots of drawbacks

in a clustered system like the one shown in figure

1.1.

Now let us consider figure 1.2 which shows the

distributed system. Here each of the four quadrants

maintains it own local copy of the database which

holds all the information pertinent to that quadrant

like user information , log tables , preloaded images,

etc… the databases in different quadrant though

they maintain only local information all of them

share the same schema. Here the root database

directs information to the appropriate quadrant. The

content of the master database will be such that it

will be able to determine the exact affiliation of the

user from his input.

Now what if the entire quadrant comes down then

the master node should be able to redirect the

request to the nearest quadrant (based on criteria

like network proximity, network hops etc…). Hence

the system proves to be very robust, but this

implementation is still in the rudimentary stages.

Once we dwell more into it, we may discover

additional challenges in it.

Now, if the master node which has the same schema

as the all the four databases in the quadrants, then

we have to introduce robustness by having some

sort of master slave architecture, which would allow

the slave to take over in case the master fails , this

would require the slave to maintain the exact copy

of the master all the time , so that it can continue

from where the master left off. This is not the only

concern we have also keep the back up turn around

time to the minimum i.e. the restoration or the

taking over of the slave should be done as soon as

possible.

 The problem of keeping the local copy in the slave
up to date can be taken care of by using the
technical described in the section 4 of the report.
Master Slave model can be used where the slave
holds the exact copy, and can take over in case the
master fails. This works as follows, the master
maintains a binary log of all queries which modify
the data in the database, and this is sent across the
network to the slave. The slave executes these set of
queries against its local copy of data, hence allows
consistency to be maintained between the local copy
and the server copy.

We can even use the method described by jung hoo

choo and Hector Garcia Molina [11] in their paper

on “Synchronization database to improve

freshness”. The problem is focused on the web data,

but this method can be applied to our domain as

well.

D. Challenges and propositions

In distributed database system as the one depicted in
the part C of this section raises several issues one of
them is robustness, which was discussed in the last
few passages, the next is the performance issues
which is mainly Parallelism and Concurrency
control and quick response time to users who access
the system and fast redirection to the closest
quadrant (depends on the network proximity using
metrics like hop count) in case the quadrant to
which the user belongs has crashed. This would
require the news of the crash to be communicated to
the master database as soon as possible so that it can

 25

take an action as soon as possible. We are using a
shared nothing architecture for our reference model
of VCL [3]. Each memory and disk is owned by
some processor that acts as a server for that data.
Mass storage in such an architecture is distributed
among the processors by connecting one or more
disks. The Teradata, Tandem, and nCUBE machines
typify this design. Shared-nothing architectures
minimize interference by minimizing resource
sharing.
They also exploit commodity processors and
memory without needing an incredibly powerful
interconnection network. As Figure 4 suggests, the
other architectures move large quantities of data
through the interconnection network. The shared-
nothing design moves only questions and answers
through the network. Raw memory accesses and
raw disk accesses are performed locally in a
processor, and only the filtered (reduced) data is
passed to the client program. This allows a more
scaleable design by minimizing traffic on the
interconnection network. Another advantage of
using the Shared nothing approach is the fact that
we can use hundreds and thousands of processors
which do not interfere with each other. [3]

 Apart from considering the approach we are using
(i.e. Shared nothing approach) . We also have to
decide how the inter connection between the various
quadrants and the master node is going to take
place. Several options including tree structured
communication network, three level duplexed
network and are mentioned in [3] .Our architecture
doesn’t require every nodes to communicate with
each other.

 Performance of the distributed system is a

composite term which depends on several factors

like response time, throughput and speed up over

varying range of loads. We must also take into

account the impact of communication overhead,

initiation costs on the performance. We must also

be able to determine how the system concurrency

control is ensured and what effect will concurrency

control have on the performance of the entire

system. We have to analyze how scaling the system

affects the system performance and how degree of

partitioning the database improves the performance.

Most of commercial available systems allow for

inter transaction parallelism (allowing more than

one transaction to execute simultaneously) and

some provide both inter and intra transaction

parallelism which improves the response time of

individual transaction[2], we want our VCL

distributed system to support both inter and intra

transaction level parallelism.

We will transaction using both the master process

(which runs on the master node) and several cohort

processor (runs in one of the nodes in the quadrant)

these two in tandem are responsible for the

successful execution of the transaction , but the

cohort processor in a particular quadrant is

responsible for the execution of the task. The

process running in the master node will also be

responsible for controlling the concurrency. Various

locking protocols are discussed in [2].

In order to increase the intra transaction parallelism

we can partition relation existing in a single

quadrant by placing the partitions across different

nodes. There are several ways to partition the

relation of a single database system (within a

particular quadrants) namely 1-Way partitioning

and 8 way partitioning [2]. The former uses no

partitioning and the entire relation may be kept in

one single node. The latter has the relation

partitioned across eight nodes. Hence the

performance in VCL system can be increased using

such partitioning schemes which will lead to intra

level parallelism [2].

E. Conclusion

We can conclude certain things safely from the
discussion of distributed system and distributing the
services

i) Performance scaling takes place linearly
as the size of the system increases.

ii) Performance of the system scales

depending on the degree of partitioning.

 26

 VII CONCLUSION AND FUTURE WORK

The VCL as already mentioned is going to

undergo a major change in terms of number of

users, increase in load and hence additional

complexity, unforeseen challenges, performance

degradation etc… are a direct consequence of the

former. I hope the changes suggested in this report

are robust enough to handle all the current problems

faced by VCL system.

 In the future, the potential for a good research

problem in the field of distributing the database

services in the VCL system is very high. The

solution to that problem will hold the key about the

success of VCL system in the future. I hope this will

lead to a robust and efficient VCL system which is

ready to face the challenges of the future and meet

all the requirements of the users.

 The process of allowing non-NCSU students to

make a reservation and use applications of their

choice is already under way by opening VCL to

Wake tech community college , the system is open

for 8 courses currently , with each course having

around 20 – 25 students.

 With Intel ready to donate one thousand Blade

Servers the signs are good for a healthy future of

VCL. With the presence of thousand blade servers

the VCL can support a maximum of twenty five

thousand users simultaneously. Hence it would be

safe to vouch that VCL is growing far and beyond

just the NCSU realm and has the potential in the

future to reach massive number of users.

VIII REFERENCES

[1] Ke Wei,M. Muthuprasanna,Suraj Kothari
“Preventing SQL Injection Attacks in Stored

Procedure” pp. 1-8.
[2] Michael J.Carey, Miron Livny “Parallelism and

Concurrency control Performance in

Distributed Database System” pp. 122–125,
127-128.

[3] David J.DeWitt,Jim Gray, “Parallel Database

Systems,The future of high performance

Database Processing.

[4] Donald kosssman, “State of art in distributed
Query processing”.

[5] Stephen M.Thomas “Using Automated fix
generation to mitigate SQL Injection
Vulnerabilities” pp .

[6] Ivan Zoratti MySQL AB , “MySQL Security
best practice.

[7] Matthias Jarke, Jurgen Koch,”Query
Optimization in database system”. pp 111-114

[8] Philip A.Bernstein , Nathan Goodman ,
“Concurrency control in distributed database
system”.

[9] Sheldon Finkelstein , “Common expression
analysis in Database Applications” pp 235 - 244

[10] UV Ramana , TV Prabhakar , “Some
Experiments with the performance of LAMP
Architecture”.

[11] Junghoo Cho, Hector Garcia Molina
“Synchronizing a database to improve freshness

[12] Title “Open Source Databases , Part III :

Choosing a database” Author Reuven M.Lerner
June 2007,Linux Journal,Volume 2007 Issue
158 Available:
http://ieeexplore.ieee.org/ie15/4123728/412372
9/04123759.pdf?tp=&arnumber=4123759&isnu
mber=4123729

[13] Title “Open Source Databases , Part II :
Choosing a database” Author Reuven M.Lerner
June 2007,Linux Journal,Volume 2007 Issue
157 Available:
http://delivery.acm.org/10.1145/1250000/12439
47/9618.html?key1=1243947&key2=86081169
11&coll=GUIDE&dl=GUIDE&CFID=4377162
2&CFTOKEN=88303657

[14] Mysql 5.1 official Documentation -
http://dev.mysql.com/doc/refman/5.1/en/

[15] InnoDB official Site -
http://www.innodb.com/

[16] Jeremy Zawodny Official Mysql site -
http://jeremy.zawodny.com/mysql/

[17] Michael Kofler , Apress : A definitive guide
to Mysql – Second Edition

Yeshwanth Kumaraswamy is from Raleigh , North Carolina
.He received his bachelors in computer science (2003 – 2007)
from Visvesvaraya technological University , Bangalore
INDIA. He enrolled in for a masters program at the NC state

 27

University in fall of 2007.He will receive his masters by spring
of 2009.

